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Abstract We distinguish two extreme classes of perturbation problems depending
on the signs of second-order response properties. The first class refers to a positive
value of the same for any state, and is overwhelmingly more probable. The other
category offers all-but-one negative values, or at least some negative values for highly
excited states. The classes are seen to differ in reproducing results of finite-dimensional
matrix Hamiltonian perturbations, allowing the emergence of a type of sum rule.
A few analytical findings are employed for direct demonstration. The outcomes provide
notable restrictions on second order response properties of quantum states.
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1 Introduction

In presence of an external perturbation λV , energy eigenvalues En0 of a system, defined
by the Hamiltonian H0, are modified. The eigenenergy Enof H = H0 + λV is given
by a power series in λ as

En = En0 + λEn1 + λ2 En2 + · · · . (1)

Conventionally, perturbation problems [1–3] are distinguished on the basis of conver-
gence or divergence of (1). Thus, one separates regular perturbations from singular
ones [3]. However, it is true that the leading nontrivial effect of the external pertur-
bation is contained in the second order correction factor En2 in (1). Accordingly, the
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second-order response property is given by

αn = − lim
λ→0

(
d2 En

dλ2

)
= −2En2. (2)

Thus, studies on properties of αn become important. Polarizability and susceptibility
are the two most significant examples of this kind of response in atomic and molecular
domains. We shall see how the nature of αn alone can classify perturbation problems
in a different way.

It is well known in non-degenerate Rayleigh-Schrödinger perturbation theory
(RSPT) [1–3] that the second-order energy correction term has the form

En2 =
∞∑

m �=n

|Vmn|2
En0 − Em0

=
n−1∑
m=0

|Vmn|2
En0 − Em0

+
∞∑

m=n+1

|Vmn|2
En0 − Em0

(3)

where Vmn = 〈�m0|V |�n0〉. Therefore, one immediately notes that

E02 < 0; α0 > 0. (4)

So, a definite conclusion about the sign of α follows for the ground state only (n = 0).
In (3), however, the first part of the sum provides a positive contribution. But, one is
never sure whether this part will dominate the overall behavior for some n-th state, in
general. Hence, property αn(n > 0) will not have any specific sign that is universal,
independent of the nature of the problem. Therefore, it will be worthwhile to look
for generalities like when all αn(n > 0) will have a definite sign, either positive or
negative, and, if so, how probable are these two extreme varieties. It is important to
gather some such information because this quantity determines the primary response
of the unperturbed system for a given perturbation in the concerned quantum state.

Employing (3), we obtain an interesting inequality [2]

K∑
n=0

En2 < 0, (5)

for any K ≥ 0. This is easy to verify, but (5) does not seem to have attracted much
attention. In case of finite-dimensional [(N+ 1)] matrix perturbation problems, the
inequality in (5) would hold for any K < N ; only for K = N we have the equality

N∑
n=0

En2 = 0. (6)

Therefore, it may be taken generally for granted that, in case of quantum-mechanical
problems, where N → ∞, we would have the inequality in (5) valid for any K .
Strangely, however, we shall notice that a class of Hilbert space problems does satisfy
(6), contrary to traditional wisdom [4].
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Specifically, the present investigation reveals that (i) it is much more probable to
obtain a positive second-order response for any state and (ii) if αn(n > 0) turns out
to be negative, at least for large n, the equality in (6) is satisfied. The results can be
summarized in the following forms

αn > 0, all n : ⇒
∞∑

n=0

αn > 0; (7)

α0 > 0; αn < 0, n �= 0 : ⇒
∞∑

n=0

αn = 0. (8)

α0 > 0; αn < 0, large n : ⇒
∞∑

n=0

αn = 0. (9)

Note that the second part is obvious in (7) from the first part, but the same is not true
of (8) or (9). Hence, one can have αn < 0 starting from n = 1 onwards, as in (8), or
even can have arbitrary signs over low to moderate range of n, as in (9), and yet the
second part in (8) or (9) would be valid in the same manner. Thus, the summation part
additionally offers a nice sum rule for a class of problems.

A few other features are worth mentioning. First, the signs of {En2} cannot vary
arbitrarily because they have to satisfy (3). However, the chance of finding a positive
En2(i.e., αn < 0) apparently increases with increasing n due to the involvement of
a larger number of positive terms in the sum (3). Second, cases where En2 can be
obtained in closed forms provide some insight into potential families that always yield
a second-order shift of a definite sign for any state. Indeed, here lies the motivation
behind studies on simple systems that offer exact analytic results for En2. Third, we
find it coincidentally that the agreement between finite [(N + 1)] and infinite [N → ∞]
dimensional results regarding the equality in (4) occurs only when we have a set of
all positiveEn2, at least for large n. Such an outcome can be generally proved and, in
situations, are verifiable with model potentials. The final conclusions are independent
of dimension and particle number, however.

2 The main results

Denoting E02 by −ε(ε > 0), we obtain from (5), for K = 1,

E12 < ε. (10)

More specifically, (10) can be written as

E12 = β1ε, β1 < 1. (11)

For K = 2 in (5), one can likewise write

E22 = β2(1 − β1)ε, β2 < 1. (12)
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In general, therefore, it follows that

Ek2 = βk(1 − βk−1) . . . (1 − β1)ε, βk < 1, (13)

where the preceding equations define the earlier β j . Form (13) is a kind of hierarchical
relationship. It provides the key to understanding and arriving at our major conclusions,
as may be witnessed below:

I. We first cast our problem in the following way. Suppose all Ek2 terms (k > 0)
are positive or zero. This implies, βk is bounded by 0 ≤ βk < 1. In such a situation,
one can also order En2 as

|E02| > E12 > E22 > E32 · · · . (14)

On the other hand, if all Ek2 terms (k > 0) are negative semidefinite, βk will satisfy
−∞ < βk ≤ 0. The domains of {β j } [respectively unity (finite) and infinite] immedi-
ately point to the overwhelmingly larger probability of encountering the latter situation
than the former, for arbitrary perturbations on arbitrary states. Thus, condition (7) on
any second order property is the most probable candidate for observations.

II. One may next appreciate why the equality (6) will be valid even for infinite-
dimensional cases, provided, of course, that all Ek2 terms for excited states are positive
semidefinite (this point may further be relaxed, see point IV below). Indeed, we can
choose here, without any loss of generality,

βk = sin2 θk, 0 ≤ θk < π/2. (15)

Then, it is easy to show that the left side of (6) takes the form

K∑
k=0

Ek2 = − ε

K∏
k=1

cos2 θk . (16)

But, for arbitrary {θk}, the right hand part of (16) tends to zero as K → ∞. Thus,
for such a class of infinite-dimensional problems, it is natural that the equality in (6)
will be obeyed, though (6) is originally a finite-dimensional result. This corresponds
to case (8).

III. The other possibility, on the contrary, is wide open. For example, if we choose
{Ek2} as negative semidefinite and similarly bounded (i.e., -∞ < βk ≤ 0), it is
permissible to take, instead of (15),

βk = − tan2 θk, 0 ≤ θk < π/2. (17)

As a result, we are led to a sum of all negative terms

∞∑
k=0

Ek2 = − ε

∞∏
k=1

sec2 θk, 0 ≤ θk < π/2. (18)
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One sees that, while a product term similar to (16) appears at (18), it now increases
without limit for arbitrary { θk}, i.e., arbitrary perturbations, and hence the inequality
in (5) will always hold. Indeed, the right side of (18) becomes infinite in magnitude.
As already mentioned in I, such cases are likely to show up under general conditions,
and they all refer to criterion (7) for a second-order property.

IV. Finally, we plan to choose the case of mixed signs. From (3), we already noticed
that, for large n, the chance of finding a positive En2 cannot decrease with increasing
n because of the involvement of a larger number of positive terms. So, in order to deal
with a very general but systematic situation, one may take, for example, that the first
(J + 1) terms are negative, and the subsequent ones are all positive. Then, of course,
we obtain a result by combining (15) and (17) in the form

∞∑
k=0

Ek2 = −ε

J∏
k=1

sec2 θk

∞∏
k=J+1

cos2 θk, 0 ≤ θk < π/2

= 0. (19)

The last result has its underlying reason same as the one appeared below (16). The
case of random mixed signs for the first (J + 1) terms leads similarly to

∞∑
k=0

Ek2 = −ε

J∏
i,l=1 (l �=i)

(
sec2 θi cos2 θl

) ∞∏
k=J+1

cos2 θk, 0 ≤ θk < π/2

= 0. (20)

Therefore, here too, the finite-dimensional outcome is revealed. Hence, it is now
transparent that one can get a class of problems for which results of finite and infinite
dimensions agree under conditions less restrictive than those involved in (15). Indeed,
this corroborates with our remark (9) on the properties of αn .

All the above results are general ones in the sense that they do not depend on the
dimensionality (or, particle number) of the problem. They are also independent of the
level of approximation of a practical theory that leads to (1).

3 Demonstrative case-studies

The primary motivation behind such a study has emerged out of a curious observation
on a large number of model Hamiltonians for which exact En2 are calculable. For
example, RSPT studies [5–7] on the harmonic oscillator show that the Hamiltonian

H = −1

2

d2

dx2 + x2 + λx M . (21)
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yields the feature En2 < 0 for any M and at any n. Here are a few results of En2 at
large n where one normally expects otherwise:

M = 3 : −7

4
n2; M = 4 : −17

4
n3;

M = 5 : −187

16
n4; M = 6 : −393

16
n5. (22)

The trend is clear; with increasing M, En2 tends to be more negative. Likewise, results
[7,8] for the hydrogenic s-state Hamiltonian of the form

H = −1

2

d2

dr2 − 1

r

d

dr
− 1

r
+ λr M (23)

leads again to similar trends of En2 for any M . In the large-n limit, one finds that

M = 1 : −7

8
n6; M = 2 : −143

16
n10;

M = 3 : −7365

128
n14; M = 4 : −80123

256
n18. (24)

Once more, let us notice that En2 < 0 for any n and at any M. It is also seen from
(22) and (24) that En2 will only be more negative for larger M . Since the harmonic
oscillator and H atom problems are two primary exactly-solvable problems in quan-
tum mechanics, and perturbations of the form (21) or (23) constitute an infinitude of
possibilities, one is inclined to believe that some kind of generality should involve
the observation En2 < 0 (n > 0). The only exception, to the best of our knowledge,
is the particle-in-a-box (PB) perturbed by a specific (linear) perturbation [9–11]. It
has, therefore, attracted our attention to provide a general proof of the prominence of
En2 < 0 under general circumstances, implying case (7), as we showed.

Since we choose a very general, statistical approach, our main results have little to
do with analytically solvable problems; however, a few other findings do have their
roots in exactly obtainable corrections. They would serve as examples of the assertion
(8) or (9), depending on the situation.

To proceed, we choose a few examples of sinusoidal perturbations of the PB problem
(m = 1/2, h̄ = 1) in (0, 1). Standard RSPT outcome with the perturbation cos( πx )
is the following:

E12 = − 1

12π2 , Ek2 = 1

4π2

(
1

2k − 1
− 1

2k + 1

)
, k > 1. (25)

The required sum for the left side of (5) gives

∞∑
k=1

Ek2 = 1

4π2

[
−1

3
+

(
1

3
− 1

5

)
+

(
1

5
− 1

7

)
+ · · ·

]

= 0. (26)
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Therefore, it stands as a concrete example of (8).
We now choose the perturbation cos(2πx). This will partly justify (9). One may

check that the results are

E12 = 1

4π2(12 − 32)
, E22 = 1

4π2(22 − 42)
, Ek2 = 1

8π2

(
1

k2 − 1

)
, k > 2. (27)

It follows immediately from (27) that

∞∑
k=1

Ek2 = 0. (28)

In fact, even if the first few Ek2 are negative or have random signs, but subsequent
ones are all positive, a characteristic feature like (9) can be easily found. For example,
consider next the perturbations cos(3 πx) and cos(4πx) of the PB. The results here are
interesting and provide full justification of (9). We have found that in the former case
E12 < 0, E22 > 0, E32 < 0, but E j2( j ≥ 4) terms are all positive. The sum, however,
satisfies (28). Similarly, effect of cos(4 πx) is to furnish E12 < 0, E22 < 0, E32 >

0, E42 < 0 and E j2( j ≥ 5) > 0, but (28) is obeyed again. Indeed, these sinusoidal
perturbations reveal a few remarkable facets in the current context. Thus, one can get
a class of problems for which results of finite and infinite dimensions agree under
conditions less restrictive [e.g., (20)] than those involved in (15) and hence obeys (9).

It is rather appealing to see, a posteriori, why most one–dimensional perturbation
problems that are analytically solvable yield all negative second order corrections.
In fact, both the harmonic oscillator and H-atom perturbations [see (5) and (7)] are
such that the n-dependence of energy would only be larger. A pure oscillator shows
a linear dependence with n. But, the effect of the total potential is such that the
corrections would only increase the power of n. In case of the PB, however, the
maximum dependence already exists (n = 2). So, either this will prevail, or it can
only decrease. Hence, the corrections cannot show an unbounded increase with n. This
is clear in all the examples with the PB. We observe that En2 ∼ 1/n2. In other words,
the large-n behavior of the corrections, if they depend on positive powers of n, can
only be negative to satisfy (5).

One can now also explain qualitatively why polarizability of H atom in any state
[12–14] would be positive, if we remember that the quantity is proportional to volume,
(i.e., r3) and r goes as n2. A similar conclusion follows for susceptibility that varies
as the area (i.e., r2). In both these cases [15], second order energy corrections are
therefore likely to be negative for any state.

4 Conclusion

In fine, we have justified that there are two extreme classes of perturbation problems.
The statistically more probable first class refers to situations with all Ek2 < 0 and
inequality (5) is obeyed by them in the K → ∞ limit. For the other class, we have all
Ek2 > 0, except for the ground state, and equality (6) is satisfied. The last result is also
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true of cases where the first few Ek2 may have arbitrary signs, but subsequent ones
are all positive. While the first class of problems (case III) possesses an immediate
practical appeal in respect of response properties [16], the second class (case II), along
with a subclass of problems (case IV) is theoretically more fascinating because of the
satisfaction of (6), which is typical of finite-dimensional matrix perturbations, and
normally one does not expect [4] infinite-dimensional problems to show up charac-
teristics of finite-dimensional ones. We note how such results put restrictions (7)–(9)
on response properties in an important way and yield sum rules in cases (8) and (9).
The hierarchical relationship (13) for any second-order property translates as

α1 = −β1α0, β1 < 1,

αk = −βk(1 − βk−1) . . . (1 − β1)α0, βk < 1.

Such inequalities among the properties {αn} of different quantum states may serve
as useful checks in approximate computations at various levels. Particularly for excited
states, it is known that contribution of the continuum is negligible in polarizability
calculations [17]. Therefore, the above chain rule will be more significant for larger k.
The link with ionization energy [18] may also turn out to be rewarding. A few model
problems demonstrate our assertions nicely. It will be of interest to notice how far
practical problems benefit from these observations.
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